Estimating Quantities: Comparing Simple Heuristics and Machine Learning Algorithms
نویسندگان
چکیده
Estimating quantities is an important everyday task. We analyzed the performance of various estimation strategies in ninety-nine real-world environments drawn from various domains. In an extensive simulation study, we compared two classes of strategies: one included machine learning algorithms such as general regression neural networks and classification and regression trees, the other two psychologically plausible and computationally much simpler heuristics (QEst and Zig-QEst). We report the strategies’ ability to generalize from training sets to new data and explore the ecological rationality of their use; that is, how well they perform as a function of the statistical structure of the environment. While the machine learning algorithms outperform the heuristics when fitting data, Zig-QEst is competitive when making predictions out-of-sample.
منابع مشابه
Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملEvaluating machine learning methods and satellite images to estimate combined climatic indices
The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کامل